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Abstract. The interlayer pair tunnelling model of Andersam al is generalized to include

the strong-coupling effects associated with in-plane interactions. The equations for the
superconducting transition temperatdieare solved numerically for several models of electron—
optical phonon coupling. The nonmagnetic in-plane impurity scattering suppressgsithall

cases considered, and it is possible to obtain a fair agreement with experiments for a reasonable
choice of parameters. For the anisotropic electron—phonon coupling proposed by Song and
Annett we find that the interlayer pair tunnelling can stabilize the ¢b-wave superconducting

state with a highT,. Moreover, in this case there is a possibility of impurity-induced crossover
from the d._,2-wave state stabilized by the interlayer tunnelling to the s-wave state at a low
impurity concentration. We also calculate the isotope effect associated with the in-plane oxygen
optical mode and its dependence on the strength of the interlayer pair tunnelling. Small positive
values of the isotope exponent are obtained for strengths of pair tunnelling that give high
transition temperatures.

1. Introduction

One of the theories proposed for hi@h-copper oxide superconductors is the interlayer
pair tunnelling (ILPT) model first suggested by Wheatly, Hsu and Anderson [1] and refined
by Chakravarty, Sudbg, Anderson and Strong [2-5]. In the ILPT model the pairing in the
individual copper—oxygen layers is enhanced and sustained by the pair tunnelling between
the layers within the unit cell. The symmetry of the component of the order parameter
resulting from in-plane interactions is not an essential feature of the model, although in
the original work [2] it was assumed that this component has s-wave symmetry. In this
paper we generalize the BCS-like form of the ILPT model given by Chakraedry to
include the retardation (i.e. the strong-coupling) effects resulting from in-plane interactions.
This generalization is necessary in order to obtain a more realistic dependeficerd

other quantities characterizing the superconducting state on the interaction parameters [6].
Moreover, the strong-coupling form of the interlayer pair tunnelling model is suitable
for including the effect of in-plane nonmagnetic impurity scattering. The dependence
of T, on impurity concentration [7—10] is considered to be an important indicator of the
symmetry of the order parameter in oxide superconductors and of the underlying pairing
mechanism [11, 12].

As in [2-5], we assume that in the superconducting state the quasiparticle picture is
approximately valid. This point has been taken in [2], based on photoemission experiments.
It should be kept in mind, however, that Chakravarty and Anderson [13] attempted an
indirect justification of the pair tunnelling Hamiltonian based on a non-Fermi-liquid form
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of the normal-state electron propagator. Sudbg [14] considered the effects of a non-Fermi-
liquid form of the diagonal part of the electron propagator in the superconducting state on
the intralayer pair susceptibility. Since the starting assumptions in [13] and [14] are as
phenomenological as the pair tunnelling Hamiltonian of [2-5], and since the experiments
seem to suggest that in the superconducting state the quasiparticle picture is recovered, we
will proceed as in [2-5] and assume that both the diagonal and the off-diagonal part of
the electron self-energy can be obtained from the relevant interactions using the standard
second-order self-consistent perturbation theory. The self-energy equations derived in this
paper are valid for any kind of in-plane pairing interaction within the one-boson exchange
approximation. In our numerical work, however, we consider only the case in which the
in-plane pairing arises from electron coupling to optical phonons. This was motivated by
the fact that the ILPT mechanism is novel enough that its consequences should be examined
first when the in-plane pairing is caused by the conventional electron—phonon interaction
before more exotic in-plane interaction models are considered. Also, Song and Annett [15]
recently derived an effective single-band Hubbard-type Hamiltonian for,Qu&hes which
includes the electron—phonon coupling to oxygen breathing modes. The electron—phonon
matrix element squared is proportional to’sit, — k,)/2) + sirf((k, — k/,)/2), wherek

and k' are the electron momenta. With this form of coupling Song and Annett initially
predicted that the order parameter with_d.-wave symmetry leads to a higher transition
temperature than the order parameter with s-wave symmetry, because in the former case the
on-site Coulomb repulsioti becomes ineffective. Subsequently, they found this conclusion

to be erroneous, which we independently confirmed during the course of this study. We
found, however, that the,d .-wave state could be stabilized by the interlayer tunnelling.

In the numerical work we concentrate on the superconducting transition temperature and
examine whether the ILPT model can explain the observed suppressipmvih increasing
impurity concentration [7—10], as well as the observed small values of the oxygen isotope
effect in high4, superconductors.

The rest of the paper is organized as follows. In section 2 we give in some detail
the derivation of the interlayer tunnelling contribution to the electron self-energy in the
superconducting state and list the well known results for the self-energy parts arising from
in-plane interactions. In addition, we summarize theequations for the case of pairing
induced by electron—optical phonon coupling. Section 3 contains our numerical results for
the transition temperature as a function of disorder and the oxygen isotope exponent, and
finally in section 4 we give conclusions.
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Figure 1. The interlayer pair tunnelling contribution to the electron Nambu self-energy.
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2. Theory

2.1. Self-energy due to interlayer pair tunnelling

In the ILPT model it is assumed that in the superconducting state the quasiparticle picture is
approximately valid for motion within a layer, while the coherent motion of quasiparticles
from layer to layer within the unit cell is blocked [2, 3]. The part of the Hamiltonian which
describes the interlayer pair tunnelling for two layers per unit cell [2, 5] is

Hy ==Y T, ¢l c? e2 +H] @)
k
Ot

wherec,,' is an electron creation operator for the state of two-dimensional momektum
and spint in the layeri, and

2
T, (k) = %[cos(kxm — cohkya)]* @

as suggested by band-structure calculations [16]. Heresharacterizes the high-energy
single-electron coherent hopping from layer to layer, and is estimated to be between 0.1 eV
and 0.15 eV [2]. The parameteenters the tight-binding dispersion for the electron motion
within a layer:

e = —2t[cos(kca) + coskya)] — 41’ cosk.a) codkya) — 3)

wherey is the chemical potential and is the lattice constant. To find the contribution to
the anomalous electron self-energy from the Hamiltonian (1), it is convenient to rewrite the
Hamiltonian in the Nambu formalism [17]. Introducing the Nambu fields

(i)
g — k1 @Ot — (o010
E =\ o e = (Cppclpy)
Cky
the Hamiltonian (1) could be written as

Hy=-Y L&) ;k) N ZSEA Tl Tl A G b A Tl e AT 4)

k
where7; and 7, are the two off-diagonal Pauli matrices [17]. This expression looks like
the sum of two two-body interaction Hamiltonians with the interaction ¥ (k)dx, 184,0
and with the interaction vertice§ and 7,, respectively [17]. Since the ILPT model does
not consider the correlations of the type T, (W\" (r)¥?"(0))), whereT; is Wick’s time-
ordering operator, we consider only the contribution to the electron Nambu self-energy
arising from the Hartree-type diagrams shown in figure 1. The contribution of these two
diagrams to the irreducible Nambu electron self-energy in layer (1) is

D (k) = —%’“)T > [B TGP (i) + 22 Tr(2262 (k. i) ®)

whereT is the temperature in energy uni(%(,z)(k:, iw,,) is the Nambu % 2 electron Green'’s
function for layer (2) at wave vectde and the fermion Matsubara frequeneay,i Tr{-- -}

is the trace, and the overall minus sign arises from one closed fermion loop. With the usual
form for thetotal irreducible electron Nambu self-energy in layer

SOk, iw,) = i, (L — ZD (K, i) o + 0V (R, iw,) 81+ $V (K, i) 82 + x D (K, i) 2
(6)
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where Z@ is the renormalization functionp® and¢® are the real and imaginary parts,
respectively, of the pairing self-energy, apdl’ is the part of diagonal self-energy which
is even in i,, equation (5) takes the form

. @ (KNt + @@ (KT,
SPk) =T,()T $ (K)o .
s =W ; (@0 ZA (D)2 + (67 + XD (KD)Z + [9P (K1) + i (K1)

(in this equation, K1) stands for(k, iw,,) for convenience of layout). It should be noted
that the interlayer pair tunnelling does not lead to any frequency dependence in the self-
energy, but contributes directly only to the pairing (i.e. off-diagonal) self-energy and, as
emphasized in [2], the resulting self-energy is locakinMoreover, in the weak-coupling
approximation for in-plane interactior&® = 1, x® = 0 and¢® and$® do not depend

on the Matsubara frequency, and the sum in (7) could be easily performed using contour
integration [17]. One finds

@)

SO (k) = T, (k) (9@ (k) 2y + <z$<2>(k>f2>Eik tanr(f—;) ®)

where Ej, = \/(8,(f>)2 + |¢@ (k) +i¢@ (k)|2, which is the same result (with®® gauged
away) as that obtained by Chakravarty, Sudbg, Anderson and Strong [2].

2.2. The self-energy due to in-plane interactions

The precise form of the self-energy due to in-plane interactions depends on the model
used, and we will restrict ourselves to the case where the pairing interaction is due to one-
boson (e.g. phonon or spin-fluctuation) exchange. The electron—phonon contribution to the
self-energy is [17, 6, 18]

S0 (K, iw,) = —% kZ |8kt 2 1? Dk — K i, — i0)22GV (K, iwn) s ©)
/A,m

where N? is the number of lattice siteg, ., is the electron—-phonon matrix element

for the momentum transfdt — k' and the phonon polarization, D;(k — k', iv,,) is the

corresponding phonon propagator at the boson Matsubara frequencgrid G is the

electron propagator for the layer An analogous expression is obtained for the self-energy

due to the exchange of antiferromagnetic spin fluctuations, excepigtRat is replaced by

the spin-fluctuation propagator and the Pauli mafgby the unit 2x 2 matrix [19].

In the case of phonon-mediated superconductivity one can include the effect of short-
range Coulomb repulsion within an effective single-band Hubbard model for copper—oxygen
planes [15]. The resulting contribution to the electron self-energy is

O = —Uiz > G (K i)t (10)
k'.m
whereU is the on-site Coulomb repulsion alﬁi’g is the off-diagonal part of the electron
Nambu Green'’s function [18].

Finally we consider the effect of in-plane electron—impurity scattering. We will not
consider all of the possible effects of electron—impurity scattering in two-dimensional
superconductors (e.g. the enhancement of the Coulomb repulsion [20]), but will confine
ourselves to the simplest treatment using either the second Born approximationrer the
matrix approximation. In the second Born approximation and assuming a constant electron—
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impurity matrix elemen¥; = (k|Vy|k'), whereVy is the change in the crystal potential due
to nonmagnetic impurity, the electron self-energy resulting from scattering off impurities is

. V2 A
$i(iw,) = ”N_2 3" %60 k. iwn) 3 (11)
k

while in the r-matrix approximation the self-energy is given by
V2 v, -
& i niVvi A A ona | s i Al PN
i) =~ > GO (k. iw,)%s |:ro - 53 > GOk, Ia),,)‘Eg:| : (12)
k k

2.3. T,.-equations for the case of pairing due to electron—optical phonon coupling

We consider the case where the in-plane pairing is mediated by an optical phonon of energy
Qg. NearT, the pairing self-energies become infinitesimal and the self-energy equations
could be linearized as described, for example, in [18, 19]. Assuming that the electron self-
energies in each of the two layers are identical @ §(k, iw,) = ¢@ (k, iw,) = ¢(k, iw,))
and defining
u(k, n) = _ ¢k, lon) _ (13)
V@, Z (K, i0,))2 + (e, + x (K, i0,))?

the T,.-equation reduces to the eigenvalue problem of a real symmetric matrix:

u(k,n) = Z Kk, n, k', mu(k', m). (14)
k' ,m
The matrixK consists of several parts associated with various interactions:
K=K,+K;+K +K,. (15)
The electron—phonon contribution is
T 2 2Qr
. L./ _ /
Kep(k,n; k', m) = N2 Z\: |gk.15] @ —om + B S(k,n)S(k', m) (16)
where
1
S(k,n) = - : . a7)
V@, Z(k,i0,))2 + (ex + x (K, [©,))>
The interlayer pair tunnelling contribution is
Ky(k,n; k' m) =8, TT;(K)S(k, n)S(K', m) (18)
while the contribution due to on-site Coulomb repulsion is
T
K.(k,n; k',m) = —FUS(k:, n)Sk', m). (19)
Treating the in-plane impurity scattering in the second Born approximation gives
’ ni Viz ’
Ki(k,n; k',m) = W&l,mS(k, n)S(k', m) (20)

while the t-matrix approximation gives

V2
Ki(k,n: k', m) = ”N—Zla,,,mS(k, n)S(k, m)/D(n) (21)
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where

2 2
Vi : Vi .
D(n) = [ {1 + 7 2 (Ea + X (@, i0)S(g, n)z} + {ﬁ Y wiZ(g,i0)S(g, n)z} } :
q q

(22)

At a given temperature the functiodgk, iw,), x (k, iw,) and the chemical potential (see
equation (3)) are determined self-consistently by solving a set of equations:

Z(k, Iwn) =1+ Zep(kv Iwn) + Zi(k, Ia)n) (23)
X(ka |a)n) = Xep(ka |a)n) + Xi (ka ia)n) (24)
together with the equation representing the particle number conservation [21]:

LA ZiRe{G ki) = = = 2L Zi( + x (k. iw,))S(k, n)?
n—=— - n = = — — £ , lwy ,n
2 NZ k n=1 S 2 N2 k n=1 * *

(25)

wheren is the band filling factor andy, ; is the (1, 1) component of the electron Nambu
Green’s function. In equations (23) and (24),, and x., are given by

. T 2 2SZE . ’ - 2
Zop(k,iw,) = — . mZ (K, 1wy,)SK', iwy, 26
ok, iw,) wnNz%;‘gk,k,x‘ (wn—wm)z—i-Q%w (k,iwy)S(K', iwy) (26)
T 2Q
Xep(k, i) = —— £ (e + x (K, i0,) (K, m)? (27)

N2 kK m (a)n - a)m)z + 9125

while Z; and x; are given by

: niViz I / 2
Zi(k,iw,) = — ;Z(k,lwn)S(k,n) (28)
: niVi2 ar ’ 2
ik, i) = == ;(skf+x<k,lwn)>S<k,n) (29)
in the second Born approximation, and by
Zi(k, iwp) = iV 3 Z(K . iwn)S(K, n)? (30)
1 £ a)n - D(H)NZ k, £ a)n 7n
. n; V2 1 . A .
Xitk,iwn) = = 7oS | Vil 373 ;wnZ(q, iw)S(q,m?) + zq}sq + x(q. iwy))

v; .
x S(q, n>2(1 + 7 ;@q + x(q, iw,))S(q, n)2>] (31)

in the t-matrix approximation. The transition temperatdieis determined as the highest
temperature at which the largest eigenvalue of makriis equal to 1 (see equation (14)).

3. Numerical results

In the numerical calculations we have taken (for definiteness) the same band parameters as
those in the work of Chakravartgt al, namelyr = 0.25 eV andr’/r = —0.45. The band

filling factor was set ak = 0.375 corresponding to.05 electrons per cell. In figure 2 we

show the density of state¥(E) for these parameters obtained by adapting the tetrahedron
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Figure 2. The electronic band density of states forrigure 3. The dependence dof. on n; V2, wheren;

the dispersion given by equation (3) calculated for g the concentration of in-plane impurities ai is
400 x 400 lattice using the tetrahedron method. Thehe electron-impurity matrix element, calculated in the
energy is measured in units pfand £ indicates the Born approximation, equation (11), for several values
Fermilevel. The inset shows the density of states (usingf the interlayer pair tunnelling strength; = 2 /1,

the same units) in the intervabf — Qg, Er + QE],  assuming the isotropic electron—phonon coupling model
where Qg = 62 meV is the energy of the optical (32) (. = 048), s-wave pairing, and the on-site
phonon. Coulomb repulsiorU = 0.

method [22] to a 400« 400 square lattice. We assumed that the electrons couple to an
optical phonon at energR; = 62 meV (i.e. 500 cm') [15], which corresponds roughly
to the energy scale of the oxygen modes in highsuperconductors. Two models for the
electron—phonon matrix element were considered. In the first model, which we will refer

to as the isotropic model, a momentum-indepenqlgm/,,\|2 was assumed:
2
E |gkwn]|” = IgI? (32)
A

and the value ofig|?> was chosen such that the electron—phonon mass renormalization
parameten. ~ 0.5. In the second model, which we will refer to as the anisotropic model,
the momentum dependence @fk,kﬂz was taken to have the form given by Song and
Annett [15]:

2 18P o ke — K, k=K,
Z\: |k a|” = 3 [sm2<T> + S|n2<T“‘>} (33)

with the same value dg|? as in (32), so the maximum in (33) is equal #7 in the isotropic
model. Because the interlayer pair tunnelling contribution to the kernel iT Heguation

(14) is local ink, equation (19), the calculations had to be performed-ispace except
when considering an isotropic in-plane interaction wiith= 0. In this case it is possible to
convert thek-sums into integrals over the electron energies and use the electronic density of
states calculated for a large (40@00) lattice. The results fdf;, = 0 and isotropic in-plane
interaction served as a check of the accuracy of the results obtained from the calculations
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in k-space. Due to memory size restrictions on the computers that were available to us (4
processor SGI R4400 and Fujitsu VPX240/10) the largest lattice size that we could consider
was 64x 64. We found that it is absolutely critical to add and subtract the noninteracting
form of the band filling factomn to the expression given as equation (25) and to evaluate
the added part af dE N(E)/(exp((E — u)/T)+ 1). Otherwise, the truncation of the sum
over the Matsubara frequencies in (25) and the finite lattice size could lead to an €fror in

as great as 55% in the case of isotropic in-plane interaction Wita- 0. This error inT,

is largely due to error in the chemical potentiawhich leads to an incorrect value for the
density of states near. We found that this trick of adding and subtracting leads to values

of T, that are accurate to better than 5% for the largest lattice size that we could consider.
The largest eigenvalue of matri in (14) was obtained using the power method [23] and,
due to the simple structure of the sums over the Matsubara frequencies in (25)—(31), there
was no need to use the fast-Fourier-transform technique of Serene and Hess [24]. The
resulting code vectorized 93-97% on Fujitsu VPX240/10.

3.1. T.-suppression by in-plane impurity scattering

We first consider the isotropic model of electron—phonon interaction and, naturally, assume
the s-wave symmetry of the pairing self-energy. Figure 3 illustrates the suppressibn of
by in-plane impurity scattering obtained within the Born approximation for four different
values of the interlayer pair tunnelling paramefer = 2 /¢ (equation (2)), and with the
on-site Coulomb repulsioty = 0. It should be stated from the outset that with the strong-
coupling effects (i.e. renormalization) one needs a larger valug o6 achieve a transition
temperature of about 100 K, typical of high-superconductors with no disorder than in
the BCS-like treatment [2, 25] (here the electron—phonon mass renormalization parameter
is A = 0.48 as deduced from the value Bfat the first Matsubara frequency afig: = 62).
In the Born approximation the impurity scattering is parametrized: %2, and we plot
T. as a function of this quantity. If we take/2r; = nN(EF)ni‘/iz, where N (Er) is the
band electronic density of states at the Fermi level, as the measure of the elastic scattering
rate, the range shown in figure 3 corresponds to about 110 meV;Wvith: = 250 meV
the maximum value of; V? in figure 3 is obtained for the in-plane impurity concentration
n; = 0.48 per cell. The overall shapes of the curves in figure 3 are similar to the results
obtained by Bang [25] in the BCS-type treatment using the circular Fermi surface and
T, (k) o |cosa|, whereg gives the position ok on the Fermi surface. However, we find
that T, is suppressed at a much slower rate than that obtained by Bang in the Born limit
[25]. At first, it is surprising that we get a drop iR with increasingz; V2 for T, = 0. In
this case there is no gap anisotropy which could be washed out by the impurity scattering
leading to the suppression @f. Also, the structure invV(E) within a range+Qg around
the Fermi level does not seem to be significant enough (see the inset in figure 2) for the
smearing caused by the elastic scattering rg#;1= O(Q2g) to have any significant effect
on T,. We checked the result fdF, = 0 by converting thek-sums into integrals over
electronic energies, as discussed at the beginning of this section, and found the same result.
Upon inspection we found that with increasingV;? there is a slight shift in the chemical
potential to the region of lower density of states. Although the reduction of the density of
states at the chemical potential is small, the exponential dependefic®wothe interaction
parameters presumably leads to the observed decreagefor 7; = 0. Note that the
rate of suppression is greater for increagged The reason for this has been discussed by
Bang [25].

Next we consider the effect of in-plane disorder in thmatrix approximation. The



Strong-coupling theory for superconductors 9015

120 T T T T
— V= t, U=0 (t-matrix approx.)
® V.= t, U=0 (Born approx.) ]
100 ——— V=2t, U=0 (t-matrix approx.) |
—-—- V= 6t, U=0 (t-matrix approx.)
---- V=28t, U=0 (t-matrix approx.) {
] — V;=10t, U=0 (t-matrix approx.)
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80 r OVs= t, U=4t (t-matrix approx.) |
<
(6]
|_
60 .
[
40 t+ -
20 1 1

0.0 0.1 0.2 0.3 0.4 0.5
n, (cell™)

Figure 4. The dependence &, on the concentration; of in-plane impurities for the isotropic
electron—phonon coupling model (32) £ 0.48) and7; = 90 meV calculated in the-matrix
approximation, equation (12), for several values of the electron—impurity matrix elevhent
except for the results given by filled circles which were obtained in the Born approximation
(the same as the solid curve in figure 3). s-wave symmetry is assumed and the on-site Coulomb
repulsionU = 0 except for the results given by squares whérds set equal to half the
bandwidth.

results are shown in figure 4 fa&;, = 90 meV. We plot7,. as a function of the in-plane
impurity concentratiom; for several values of the impurity scattering potential parameter
V:. Note that forV; = r = 250 meV ther-matrix approximation (solid line) and the Born
approximation (dots) give very similar results, as one would expect in the limit of small
V: (see equations (11) and (12)). Increasiigleads to a more rapid suppression Tf

with increasing impurity concentration, and the unitary limit is reached;by 6:—8 with

U = 0. Note, however, the change in curvatureTpfversusn; as'V; is increased. This

trend was not found in the weak-coupling calculation of Bang [25] in crossover from the
Born limit to the unitary limit. However, the overall rate of suppression of the transition
temperature with increasing disorder that we find in the unitary limit is comparable to the
rate found by Bang [25] for = 0.5 (with our N(Er) = 1.16 x 102 states meV?*/(cell

spin) the impurity concentration; = 0.1 per cell corresponds to the impurity scattering
rate in the unitary limit"; = n; /(x/N(EF)) = 27 meV). We also obtained steplike features

in the T.-curves in the unitary limit which we are not able to associate with any particular
feature of the model and/or the numerical procedure used. The experiments [7-10] in
general did not produce the data on the very fine scale over which we observe the steps,
and only in [8] was there an attempt to interpret fine features of the observed dependence of
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T, for Y1_,Pr,Ba&CwOg on the Pr concentration. It should be kept in mind that only the
experiment of Tolpyget al[10] addresses specifically the in-plane defects in XBg80g. .

at the fixed carrier concentration to which our model calculations apply. The most important
aspect of figure 4 is that it illustrates the profound effect of the Coulomb interaction on
the dependence df. on the concentration of in-plane impurities. Fgr= 4r (half the
bandwidth) the solid curve in figure 4 obtained fgr = ¢ in the t-matrix approximation

is pushed down to the line given by squares. The decreadg for U = 4r is about

5 K per 1% of in-plane defects, similar to the value found by Monthoux and Pines [12]
for V; =t in the model of spin-fluctuation-induced superconductivity and d-wave paring,
and to the value measured by Tolpygbal [10]. Moreover, we found that for this choice

of parameters)( = 0.48, U = 4r = 1 eV) switching off the interlayer pair tunnelling
reduces the transition temperature from 84.5 K (for= 90 meV) to 1.6 K forn; = 0.

This illustrates the remarkable effect of the interlayer pair tunnelling mechanism on the
enhancement of th&..

120

100

80 -
<
O
'_
60  —— V= t, U=2t (s-wave) o .
——— V,=10t, U=2t (s-wave)
------------- V=10t, U=4t (s-wave) <o
40 | © -
O V= t, (d-wave) <o
(o
¢ V,=10t, (d-wave)
20 1 1 1 1
0. 0.02 0.04 0.06 0.08 0.1
n, (cell ™)

Figure 5. The dependence &f. on the concentration; of in-plane impurities forl’; = 90 meV
and for the anisotropic electron—phonon coupling model (33) (the same valgé afias used
as in figures 3 and 4) calculated in thenatrix approximation, equation (12), for the electron—
impurity matrix elemenv¥; set equal to eitheror 10 (the unitary limit). The assumed symmetry
of the gap is indicated in the brackets and the value of the on-site Coulomb repulsisn
indicated in the key. Ford_,> symmetry of the gapl/ drops out; see equation (10).

Next, we turn to the anisotropic model of the electron—phonon coupling function,
equation (33). The results fdf; = 90 meV using the-matrix approximation are shown
in figure 5. As we have mentioned in the introduction, we were not able to obtain a finite
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transition temperature assuming d. symmetry of the pairing self-energy f@y = 0 down

to the lowest temperature that we could consider usingktispace method (about 20 K).
However, withT; = 90 meV we obtained a transition temperature of 114 K assuming
d,2_,» symmetry of the gap fon; = 0. It is interesting that the s-wave case with= 2¢

and the ¢-_,.-wave case (the on-site Coulomb repulsion drops out; see equation (10))
give quite a similar dependence @f on n; for both V; = ¢t and V; = 10¢. The results
obtained forV; =t are similar to the experimental results on ¥%BasOg., with in-plane
oxygen defects [10], although we find that the squares in figure 4 more closely resemble
the experimental data at the highest valuesiofvhere the data seem to fall on a curve
that becomes less steep @sis increased. In the unitary limiV; = 10 the T,-curves
initially rise with increasings:; and then precipitously drop. There seems to be a common
thresholdn; beyond which superconductivity disappears for both the s-wave pairing with
eitherU = 2t or U = 4t and the ¢-_,.-wave pairing. We have found a similar behaviour
for s-wave pairing withU = 4¢, T, = 90 meV andV; = ¢ (not shown here), except that
the initial rise in7, is much less pronounced and the threshold occurs at a higher value of
n;.

120 T T

100

T (K)

80

— d-wave, V =t

A s-wave, V =t, U=4t

60 1 1
0.00 0.02 0.04

n, (cell ™)

Figure 6. The dependence @f. on the concentration; of in-plane impurities foi7; = 90 meV
and for the anisotropic electron—phonon coupling model (33) (the same valui ofas used as
in figures 3, 4 and 5) calculated in thamatrix approximation, equation (12), for the electron—
impurity matrix element; = ¢. The results for ¢o_ > symmetry of the gap are given by the

solid line and the results for s-wave symmetry are given by triangles. Note thatiasreases
the state with the highe&t. crosses over fromxdfyz symmetry to s-wave symmetry.

We would like to point out that with the electron—phonon coupling function given by
equation (33) it is possible to have impurity-induced crossover from the.dwave state in
a very pure system to the s-wave state at a higher impurity concentration; see figure 6. All
of the interaction parameters for the two curves in figure 6 are the same. The only difference
is that for the solid curve thed ,.-symmetry of the pairing self-energy is assumed (in this
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case the on-site Coulomb interaction drops out; see equation (10)), while for the triangles
the s-wave symmetry is assumed. At a given impurity concentration the system will go into
a state with a higher, in order to lower its free energy.

0.6 T T T 260
@—@ o (s—wave isotropic)
B8 o (s—wave anisotropic) ﬁ
' . /;
0.5 A — 4 o (d-wave anisotropic) [,:/"/ 1 220
4
O—-O T, (s—wave isotropic) //
O---0OT. (s-—wave anisotropic) /
04 r I — AT, (d-wave anisotropic) W , 180
R
_|
[¢]
S 140 =
100

60

Figure 7. The isotope coefficient = —dInT,/dIn M associated with the oxygen optical mode

at 500 cnmt! and the corresponding, as functions of the interlayer pair tunnelling strength

T = ti/t. In all cases the on-site Coulomb repulsionis equal to zero. The results obtained
with the isotropic electron—phonon coupling model (32) are labelled as (s-wave isotropic). The
results obtained with the anisotropic electron—phonon coupling model (33) are labelled as (s-
wave anisotropic) or as (d-wave anisotropic) depending on whether s-wave grzdvave

symmetry is assumed, respectively. The valuégt? is the same as in figures 3-6, leading to
A = 0.48 in the isotropic case.

3.2. The isotope effect associated with the in-plane oxygen optical mode

We have examined the isotope effect associated with the optical phonon which mediates
the in-plane interaction. In the original work of Chakravagtyal it was suggested that the
interlayer pair tunnelling mechanism could explain a small isotope effect inRigiopper

oxide superconductors simply because in the interlayer tunnelling model the most important
pairing process is associated with the pair tunnelling. Our results for the isotope exponent
a = —dInT./dInM associated with the optical mode @tz are shown in figure 7. In

the same figure we give the corresponding transition temperatures. The impurity scattering
was set equal to zero and the results for s-wave symmetry were obtained for the on-site
Coulomb repulsionV equal to zero. Note that for the isotropic model of electron—phonon
interaction, equation (32), we get the classical reaul: 0.5 for 7, = 0. In the same
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model T, = 90 meV givesT, = 108 K anda = 0.18. Turning on the on-site Coulomb
repulsion toU = 4¢ (half the bandwidth) reduces the transition temperaturE. te 84.5 K

and the isotope exponent &o= 0.05 (not shown in figure 7)—a value approximately equal

to what is found for the oxygen isotope effect in hihY—Ba—Cu—O systems [26]. In the
site-selective oxygen isotope experiments of Nickehl [27], where only the oxygen in
copper—oxygen planes is replaced by a heavier isotope, a small negative isotope effect was
observed with the partial isotope exponent —0.014+0.004—close to the resolution limit

[26]. Subsequently, the site-selective oxygen isotope experiments performed betZdch

[28] established that more than 80% of the total (positive) oxygen isotope effect is associated
with the copper—oxygen planes, in agreement with our calculation. For anisotropic electron—
phonon interaction, equation (33), and assuming s-wave symmetry of the gap, we generally
get lower values of than in the isotropic case. F@; = 90 meV andU = 0 the transition
temperature is 123 K and = 0.04. Turning onU = 4r reduces thel,. to 78 K and
increases the isotope exponentte= 0.08. For d._,. symmetry of the gap we obtain very
small positive values ak—probably smaller than the experimental resolution [26].

4. Conclusions

We have generalized the interlayer pair tunnelling model of Anderson and co-workers to
include the retardation effects associated with in-plane interactions. Through numerical
solutions of theT.-equations for a model in which electrons couple to an optical phonon at
500 cn? (i.e. 62 meV) we found, without trying to fit the experiments, that a reasonable
choice for the band parameters £ 250 meV,t'/t = —0.45), band filling factor (0.75
electrons per cell), electron—phonon coupling £ 0.48), on-site Coulomb repulsion

(U =~ the bandwidth), and the interlayer pair tunnelling strength=£ 0.15 eV) results

in surprisingly good agreement with the experiments on bolh-suppression by in-plane
oxygen defects [10] and the oxygen isotope effect [26, 28] in XBBOs,,. The best
agreement is found for the isotropic model of the electron—phonon coupling function with
U = 4r which leads to th&.-suppression rate of abbb K per 1% of the in-plane defects
(with the impurity matrix elemen¥; = ¢) and to the oxygen isotope exponent= 0.05.

This case also best illustrates the importance of the interlayer pair tunnelling process in
raising the transition temperature, since redudingrom 0.15 eV (i.e.7; = 90 meV) to

zero decreases tHE from 84.5 K to 1.6 K. We also found that for the anisotropic form

of the electron—phonon coupling proposed by Song and Annett [15], equation (33), the
interlayer pair tunnelling can stabilize the superconducting state with-dsymmetry at

a highT.. This stabilization occurs because the pair tunnelling contribution to the pairing
self-energy is local irk. Moreover, it is possible to have impurity-induced crossover from
the d-_,» state in a ‘perfect’ sample to the s-wave state at a higher concentration of defects.
This is illustrated in figure 6 fof; = 90 meV andU equal to a quarter of the bandwidth,

but we have also found examples of such a crossover for other valugsafd U.
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